OPEN-SET OCT IMAGE RECOGNITION WITH SYNTHETIC LEARNING
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ABSTRACT

Due to new eye diseases discovered every year, doctors may
encounter some rare or unknown diseases. Similarly, in medi-
cal image recognition field, many practical medical classifica-
tion tasks may encounter the case where some testing samples
belong to some rare or unknown classes that have never been
observed or included in the training set, which is termed as
an open-set problem. As rare diseases samples are difficult to
be obtained and included in the training set, it is reasonable to
design an algorithm that recognizes both known and unknown
diseases. Towards this end, this paper leverages a novel gen-
erative adversarial network (GAN) based synthetic learning
for open-set retinal optical coherence tomography (OCT) im-
age recognition. Specifically, we first train an auto-encoder
GAN and a classifier to reconstruct and classify the observed
images, respectively. Then a subspace-constrained synthe-
sis loss is introduced to generate images that locate near the
boundaries of the subspace of images corresponding to each
observed disease, meanwhile, these images cannot be classi-
fied by the pre-trained classifier. In other words, these synthe-
sized images are categorized into an unknown class. In this
way, we can generate images belonging to the unknown class,
and add them into the original dataset to retrain the classifier
for the unknown disease discovery.

Index Terms— Open-set, Generative Adversarial Net-
work, Subspace-constrained Synthesis Loss

1. INTRODUCTION

Retinal optical coherence tomography (OCT) image recogni-
tion is an important task in the medical imaging field, and
the deep learning methods have achieved excellent perfor-
mance for OCT image recognition [1, 2]. However, to our
best knowledge, most of the current researches focus on the
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Fig. 1. The closed set (Blue Circle) is the training set. The
testing set contains classes in the closed set and unknown or
rare classes (Red)

closed-set setting where the classes in training and that in test-
ing are the same. In practical clinical applications, encoun-
tering eye diseases classes that have never been included [3]
in training is a common situation because the rare presence
of some diseases leads to the unavailability of those diseases
in the training set. Thus it is desirable for an OCT image
recognition system to simultaneously recognize images of the
observed/known categories and label those images that have
never seen before as the unknown category, which is referred
to as an open-set[4, 5] problem.

Although the open-set problem is a common problem in
both the medical field and computer vision field, very few
works have been done in this area. The probability threshold
method classifies an image x as the unknown class by pre-
dicting its probabilities belonging to known classes y;(i =
1,2,...N). If the maximum probability max P(y;|x) is low
enough. Recently, Generative Adversarial Network (GAN)
[6] has emerged and demonstrated its capability of synthe-
sizing unseen images[7, 8]. Further, in [9], a counterfactual
image generation framework is proposed to synthesize im-
ages of unseen classes. But in their solution, a latent vector is
synthesized by minimizing the pairwise distance between the
synthesized latent vector and a latent vector of an image in the
training set. Thus the distribution of the synthesized images
may be mixed with the distribution of training images, which
makes the consequent classification difficult. Further, their
solution is designed for general image rather than especially



for OCT images, the two-dimensional or three-dimensional
structure of biological tissue can be obtained by detecting the
reflection or scattering signals of the incident weak coherent
light at different depth layers of biological tissue. The struc-
tural information of the retina is relatively fixed, which would
further facilitate the image generation.

Motivated by the success of the counterfactual image gen-
eration framework[9] for synthesizing images, in this paper,
we propose a GAN based OCT image synthesizing frame-
work for open-set classification. Specifically, we first pre-
train a GAN for generating real images in the training set,
and a classifier for classifying the real images in the train-
ing set. Then rather than using the pairwise synthesis loss in
[9], we design a subspace-constrained synthesis loss, which
makes the synthesized images locates at the boundaries of the
training samples, then we add the synthesized images into the
training set and retrain the classifier for open-set OCT image
recognition.
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Fig. 2. (a) A typical classification method can only achieve
good performance on the classes in the training set (Blue
and Orange), but cannot recognize the unknown class (Green)
well. The synthesized image (Red) around the known classes
distribution enable classifier to recognize the unknown class.
(b) Experimental visualization by t-SNE [10]. Synthesized
latent vectors are projected onto a 2D space.

We utilize t-SNE in [10] to reduce the dimension of syn-
thesized latent vectors and demonstrate projected points in
2D space in Fig. 2(b). Fig. 2(b) shows the advantage of
our method over the counterfactual images method. The syn-
thesized latent vectors of our method are well separated from
those in the training set, while they are blended in the counter-
factual images method, which demonstrates the effectiveness
of our subspace-constrained synthesis loss over that in coun-
terfactual images [9].

We summarize the contribution of this work as follows:
(1) a human-mimic open-set OCT image recognition algo-
rithm is proposed which would push the OCT image analy-
sis towards the real application. (2) we propose to leverage
a GAN based image synthesizing framework to synthesize
images of the unknown class. Meanwhile, a subspace con-
strained synthesis loss is proposed for synthesizing images
that fall out of the distribution of the training data, which con-
sequently improves the classification accuracy; (3) extensive
experiments and ablation studies on both the Cell dataset and
the BOE dataset validate the effectiveness of our solution for
open-set OCT image recognition.

2. METHOLODY

To tackle the open-set OCT image recognition problem, we
propose to synthesize the images corresponding to unknown
diseases and add the synthesized images corresponding to un-
known diseases into the original training set to train a classi-
fier for open-set OCT image recognition. The whole pipeline
is shown in Figure Fig. 3. Specifically, we first map an image
into a low dimensional latent vector space S with an encoder
E. For each sample in .S, we can map it back to an OCT im-
age with a GAN model which consists of a generator G and
a discriminator D. Then we can pretrain the encoder E and
the GAN model. We also pretrain a classifier C' to classify
all training samples into the observed classes. For OCT im-
ages corresponding to unknown diseases, because OCT im-
ages have a relatively fixed structure, even with different dis-
eases, they should also correspond to some vectors in the la-
tent vector space S. Therefore we introduce a subspace con-
strained synthesis loss to learn the latent vectors correspond-
ing to images belong to the unknown class by leveraging the
pre-trained generator and the classifier. After that, we map the
latent vectors of unknown diseases to the image space with
the generator and add the synthesized images into the train-
ing set to retrain a classifier. In this way, the new classifier can
classify images from the observed classes as well as unknown
classes.

2.1. The GAN Model

Compared with the general object image, OCT images are
highly structured even with diseases, which facilitates its gen-
eration. By following the work for image generation [9], we
first propose to encode an input image x into a low dimen-
sional vector z = F(z). Each vector in the low dimensional
space can be mapped back to an OCT image with a generator
G. To make the generated image looks more real, a discrimi-
nator D is introduced to encourage the generated and the real
images to be indistinguishable. Further, to avoid the ubiqui-
tous mode collapsing in GAN model, following [11], for an
image generated from a latent vector which is mapped from a
real image, a pixel-wise similarity loss is imposed on the gen-
erator ||z — G(E(x))]||2. Then we arrive at the following the
objective functions for the generator and the discriminator:
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Fig. 3. The overview of the framework for synthesizing OCT images. The process can be divided into two stages:(1) The
training of the auto-encoder GAN (Blue). (2) The subspace-constrained synthesis loss optimization for image generation
(Green). The output latent vector Z will be mapped into image space by the generator.

Lpc(E,G) = ||z — G(E(x))[l2 — D(G(E(x))) (1)

Lp(D) = D(G(E(x))) — D(x) 2

The encoder, the generator, and the discriminator can be op-
timized alternatively with the observed training images. In
our implementation, the encoder of our network consists of
four downsampling layers, As that in [12], and the generator
also shares the same structure with the decoder in [12], except
that the skip connections between the encoder and decoder in
[12] are removed in our implementation. The discriminator
D takes the same architecture of that in the patchGAN [13].

2.2. Generating Images from the Unknown Class

On the one hand, even though the relatively fixed structure
of OCT images makes the latent vectors share some similar-
ities, for those latent vectors corresponding to unknown dis-
eases, it is desirable that they locate around the boundaries of
the subspace formed by the observed training samples, which
makes them distinguishable from the observed classes; On
the other hand, the images generated from these latent vec-
tors corresponding to unknown diseases should not be classi-
fied into the known classes by the pre-trained classifier, which
means the probabilities corresponding to all NV known cate-
gories estimated by the classifier should be low. By taking
these properties into consideration, we propose a subspace-
constrained synthesis loss for learning the latent vectors of
unknown diseases, thus for a latent vector corresponding to
an unknown disease, we introduce the following subspace-
constrained synthesis loss:

N
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Here Z = [z1,22,...,%n), and z; = E(x;). Z corresponds
to the latent feature vectors of training samples. Linear coef-
ficients « are constrained by constraint term F'(«):

F(a) = oll1 = 1%alls + 6y @)

where o||1 — 17 a||; is used to ensure the linear superposition
of Z still falling into the distribution of observed classes, and
|lcr]|1 encourages the coefficients « to be a sparse vector. The
coefficients k, o, & are the weights of the corresponding terms.

The first term of the objective function measures the dis-
tance between the latent vector of a synthesized image z and
the linear combination of latent vectors of training images,
and the second term makes probabilities C(G(z)); estimated
by the pre-trained classifier low. Both log(C(G(z));) and
5|/ |} push feature vector z towards the boundaries of known
classes distribution.

In our implementation, in each batch, we randomly sam-
ple some training images and optimize the objective function
to obtain the target latent vector 2 by a gradient descent-based
optimization method. After we get a latent vector 2, the gen-
erator G is used map it to an image & = G(Z2), which is added
into the training set as an image from an unknown class. Then
we retrain the classifier on this new training set. In this way,
the classifier can recognize images of both the observed train-
ing classes and some unknown classes.

3. EXPERIMENT
Our experiments are evaluated with two public OCT datasets:
(1) the Cell OCT dataset, which contains OCT images of 4

categories. (2) the BOE dataset, which contains OCT images
of 3 categories.

3.1. Datasets
3.1.1. The Cell dataset [1].

There are 4 categories of images in the Cell dataset: Nor-
mal, Choroidal NeoVascularisation (CNV), Diabetic Macular
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Fig. 4. The unpaired synthesized samples from the Cell dataset. A batch of synthesized images is generated from a batch of
images of known class. Different and reasonable lesion areas are generated (Red box)

Table 1. Quantitative experiments accuracy results of different methods

Method Cell BOE
Normal(%) DME(%) Normal(%) AMD(%)

Baseline 98.40 94.80 94.85 95.63
Threshold(A = 0.6) 98.40 94.80 94.50 94.54
Threshold(A = 0.7) 98.20 94.60 91.41 93.44
Threshold(A = 0.8) 98.20 94.20 86.60 89.62
Threshold(A = 0.9) 98.00 93.80 80.41 80.33
Counterfactual Images 98.80 97.40 72.16 95.63
Ours 99.00 100.00 96.22 91.80

Table 2. Quantitative experiments AUC results of different

methods
Method AUC
Cell BOE
Threshold 0.7901 0.5194
Counterfactual Images 0.8192 0.5891
Ours 0.8578 0.6851

Edema (DME) and Drusen. We use images of 3 categories
which are Normal, DME and Drusen to do experiments. We
utilize Normal and DME class images as the training set, and
500 images of Normal, DME and Drusen classes as the test-
ing set. The Drusen class is defined as the unknown class.

3.1.2. The BOE dataset [14].

There are 3 categories of images in BOE dataset: Normal,
Age-related Macular Degeneration (AMD) and Diabetic
Macular Edema (DME). Each class consists of 15 volumes
corresponding to 15 different patients. We use 9 volumes of
Normal and 9 volumes of AMD categories as the training set.
3 volumes of every category as validation set and 3 volumes
of every category as the testing set.

3.2. Results

The evaluation metrics in this paper follow that in [9], which
computes the accuracy of closed-set classes and Area Un-
der the ROC Curve (AUC) for a binary classification on the
known class and the unknown class. We utilize these metrics
because the samples of rare and unknown classes are not the
main target for a classifier in the medical image, so the clas-

sification accuracy of the closed set should be stable and the
ability for detecting unknown class are evaluated by AUC.

Table 1 shows the quantitative closed-set accuracy analy-
sis of the proposed method. It is obvious that our method can
achieve better the performance of classification for observed
classes than other methods, which is meaningful in practical
applications. Fig. 4 shows the qualitative analysis of syn-
thesized images, we can see that the structure information of
retinal OCT images is well preserved.

By gradually thresholding the probabilities estimated by
the softmax classifier, we can compute the percentage of im-
ages being classified as an image of the unknown class but
in fact, belonging to some known class (false positive) and
the percentage that is classified into an unknown class and
also belonging to the unknown class (true positive). Then we
can draw the Receiver Operating Characteristic (ROC) curve
and compute AUC according to ROC curve. The results are
shown in Tabel 2. We can see that our achieves the best per-
formance, which further demonstrates the capability of our
approach for the unknown class discovery. It also validates
the effectiveness of our method over counterfactual image [9].

4. CONCLUSIONS

This paper represents a GAN based image synthesis approach
for open-set OCT image recognition. By generating images
from an unknown class with a novel subspace-constrained
synthesis loss and retraining the classifier with both training
images and synthesized images, our method can simultane-
ously recognize images from both the observed classes and
the unknown class.
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