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Abstract

This paper tackles RGBD based gaze estimation with Convo-
lutional Neural Networks (CNNs). Specifically, we propose
to decompose gaze point estimation into eyeball pose, head
pose, and 3D eye position estimation. Compared with RGB
image-based gaze tracking, having depth modality helps to
facilitate head pose estimation and 3D eye position estima-
tion. The captured depth image, however, usually contains
noise and black holes which noticeably hamper gaze tracking.
Thus we propose a CNN-based multi-task learning frame-
work to simultaneously refine depth images and predict gaze
points. We utilize a generator network for depth image gen-
eration with a Generative Neural Network (GAN), where the
generator network is partially shared by both the gaze track-
ing network and GAN-based depth synthesizing. By optimiz-
ing the whole network simultaneously, depth image synthesis
improves gaze point estimation and vice versa. Since the only
existing RGBD dataset (EYEDIAP) is too small, we build
a large-scale RGBD gaze tracking dataset for performance
evaluation. As far as we know, it is the largest RGBD gaze
dataset in terms of the number of participants. Comprehen-
sive experiments demonstrate that our method outperforms
existing methods by a large margin on both our dataset and
the EYEDIAP dataset.

Introduction
Gaze estimation is an important task and has wide applica-
tions in human-computer interaction (Majaranta and Bulling
2014), visual behavior analysis (Morimoto and Mimica
2005) and psychological studies (Rayner 1998). More re-
cent studies have focused on appearance-based estimation
(Zhang et al. 2015; Krafka et al. 2016; Zhang et al. 2017;
Zhu and Deng 2017) as a vehicle for general gaze estima-
tion. Unlike model-based methods, appearance-based meth-
ods achieve satisfactory performance and at the same time
maintain a user-friendly data acquisition procedure, i.e.,
without imposing additional priors on face poses or con-
ducting elaborate system calibrations. Despite being a de-
sirable gaze estimator, existing solutions are still sensitive
to head pose, illumination inconsistencies, occlusions, low
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image quality, etc. In particular, accuracy in gaze estimation
still varies significantly across subjects.

In light of the recent success of Convolutional Neural
Networks (CNNs) in various computer vision tasks, a num-
ber of approaches have been proposed to leverage CNNs
for appearance-based gaze estimation (Krafka et al. 2016;
Zhang et al. 2017). They observe that the gaze point of a per-
son depends on 3D eye position centered at the camera and
gaze direction whereas the gaze direction further depends on
the head and eyeball poses (Zhang et al. 2017) 1. The 3D eye
position imposes significance because even with the same
gaze direction, a change of distance between the eye and the
screen would change the gaze point on the screen target, as
shown in Figure 1. To obtain 3D eye positions, (Krafka et al.
2016; Zhang et al. 2017) employed face grid to indicate the
face region in the image. In reality, faces of different sub-
jects can vary greatly in size and shape that a uniform grid
is insufficient to describe.

Another challenge lies in head pose representations. A
number of previous approaches (Krafka et al. 2016; Zhu and
Deng 2017; Ranjan, De Mello, and Kautz 2018) attempt to
encode head pose information by analyzing the RGB color
image, e.g., to introduce gaze transform layers or to use
branched head pose models. Improvements brought by these
approaches are still limited due to the lack of depth infor-
mation. In this paper, we introduce depth-based approach to
simultaneously address the 3D eye positions and head pose
representation problems.

Using RGBD images for gaze tracking is not completely
new (Mora and Odobez 2013; Xiong et al. 2014). However,
the latest approaches only use a sparse set of points with
depth information due to the limitations of the depth sensor.
These points, although useful, are not sufficiently robust to
reconstruct the head pose. Ideally, data-driven methods can
more robustly infer the pose by leveraging learning-based
approaches. However, so far only a single RGBD dataset is
readily available to the public and the dataset itself only con-
tains a very small number of participants - 16 with 12 males
and 4 females. The study by Krafka et al. shows that more
participants can clearly improve gaze tracking performance
(Krafka et al. 2016). On the dataset front, we first present a

1The eyeball pose has also been denoted as the eyeball move-
ment (Zhu and Deng 2017).
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Figure 1: Our data acquisition system.

much larger RGBD gaze tracking dataset. Our dataset con-
sists of 218 participants with a total over 165K images, prob-
ably the largest RGBD gaze dataset readily available to the
research community.

On the algorithm front, we observe that (Zhu and Deng
2017) has demonstrated the effectiveness of estimating eye-
ball pose and head pose using separate CNNs. (Krafka et al.
2016) has further shown the benefits of separately extracting
features from eye and face images. When combined with
3D eye positions features extracted using face grid, (Krafka
et al. 2016) achieves the state-of-the-art performance. In a
similar vein, we propose to decompose gaze point estima-
tion into four separate modules: eyeball pose estimation,
head pose estimation, 3D eye positions estimation, and gaze
point estimation. Both head pose and 3D eye positions es-
timation exploit depth information. We notice that the cap-
tured raw depth images are of high noise and contain holes
caused by occlusions, specularity of eyeglasses, depth range
limitations, etc. We hence build a network to simultaneously
remove noises and compensate for holes.

The contributions of this paper can be summarized as fol-
lows: 1) We build a large-scale RGBD gaze tracking dataset,
to facilitate the exploration of data-driven approaches for
gaze tracking; 2) We propose to decompose gaze point es-
timation into eyeball pose, head pose, and 3D eye position
estimation and design a CNN based multi-task learning net-
work to simultaneously refine depth maps and predict gaze
point. Specifically, we present a generator network for both
depth image refinement and head pose feature extraction.
The generator is partially shared across multiple modules
and can extract the effective head pose information; and 3)
We conduct extensive experiments to show that our new
technique outperforms existing state-of-the-art methods by
a large margin in gaze tracking.

Related Work
RGB Image Based Gaze Tracking
Generally, gaze estimation can be categorized into model-
based and appearance-based methods (Hansen and Ji 2010).
Model-based methods (Zhu, Ji, and Bennett 2006) utilize
geometric eyeball models and features for gaze estimation.
Appearance-based methods (Lu et al. 2014b; 2014a) directly
extract eye or face image information as feature vectors and
learn a mapping from the feature vectors to gaze points. Pre-
vious research has mainly relied on hand-crafted features.
Due to their success, CNNs have also been introduced to
gaze tracking. In (Zhang et al. 2015), head poses were en-
coded as extra information used for gaze tracking. Krafka et
al. (Krafka et al. 2016) proposed the implicit extraction of
eyeball pose, head pose and eye coordinates from eye im-
ages, face images and a face grid. Zhang et al. (Zhang et
al. 2017) proposed a spatial weights CNN for gaze point es-
timation directly from single RGB face images. It is worth
noting that even though both head pose and eyeball pose can
be inferred from face images, the input resolution of these
faces is fixed because of computational costs, therefore eye
areas are small, in addition to which CNN pooling opera-
tions cause information loss. Thus, such global face input
solutions may not be a good choice for gaze point estima-
tion. Recently, Zhu et al. (Zhu and Deng 2017) explained
the within-subject and cross-subject ambiguity of extract-
ing head pose based on facial landmarks, and proposed the
encoding of head pose and eyeball pose with two separate
CNNs. Ranjan et al. (Ranjan, De Mello, and Kautz 2018)
designed a branched gaze network with different head poses.

RGBD Image Based Gaze Tracking
To recover a 3D model of head pose more accurately, RGBD
cameras have been used in some works (Mora and Odobez
2013; Xiong et al. 2014). Previous works (Xiong et al. 2014)
used eye or facial landmark locations in 3D space as seen by
RGBD cameras, and predicted the gaze point through a map-
ping function learned from a personal calibration step. Al-
though depth cameras were utilized to collect data and head
poses were obtained (Sugano, Matsushita, and Sato 2014;
Zhang et al. 2015), only six points on the face were used to
establish the head coordinate system, insufficient to recover
a 3D model of the face. Our method strengthens the impor-
tance of the facial 3D model and instead inputs the overall
head depth into the network architecture to enhance perfor-
mance.

Gaze Tracking Dataset
Because the deep learning method for gaze tracking is a
data-driven appearance-based model, a large amount of pub-
licly available gaze datasets have been proposed (Mora,
Monay, and Odobez 2014; Sugano, Matsushita, and Sato
2014; He et al. 2015; Zhang et al. 2015; Huang, Veeraragha-
van, and Sabharwal 2015; Krafka et al. 2016). Most of these
datasets, however, only used single faces or eye images, or
a combination thereof, which ignored the distance between
participants and the screen target. This lack of depth in-
formation causes difficulties in estimating head poses and



Table 1: Statistics of our dataset with some publicly available datasets. Abbreviations: cont. for continuous, illum. for illumina-
tion.

Dataset #Participants #Poses #Targets Illum. #Images #Views Modality
UT-Multiview 50 8 + synth. 160 1 64,000 8 RGB
OMEG 50 3 + cont. 10 1 45,000 1 RGB
MPIIGaze 15 cont. cont. cont. 213,659 1 RGB
TabletGaze 51 cont. 35 cont. videos 1 RGB
iTracker 1474 cont. cont. cont. 2,445,504 1 RGB
Free-head 200 cont. cont. cont. 240,000 12 RGB
ShanghaiTechGaze 137 cont. cont. cont. 233,796 3 RGB
EYEDIAP 16 cont. cont. 2 videos 1 RGBD
ShanghaiTechGaze+ (ours) 218 cont. cont. cont. 165,231 pairs 1 RGBD

Figure 2: Some images captured by our system.
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Figure 3: Depth distribution of left and right eyes in our
dataset.

eye coordinates. In (Sugano, Matsushita, and Sato 2014;
Lian et al. 2018), multi-view cameras were proposed to cap-
ture eye images, and the UT Multiview dataset and Shang-
haiTechGaze dataset was built. Depth information was im-
plied by the multi-view data, but this information was not
obvious. Mora et al. (Mora, Monay, and Odobez 2014) have
built a dataset based on RGBD by using a Kinect camera, but
the participants were too few (only 16 participants). Krafka
et al. (Krafka et al. 2016) showed that more participants
would boost the performance of person-independent gaze
tracking. Thus we build a large RGBD gaze dataset with 218
participants and 165,231 images. Our dataset will facilitate
the study of data-driven-based approaches for gaze tracking,
and we will release our dataset to the community in the fu-
ture.

Our Proposed RGBD Dataset
Data Collection System
Our data collection system is depicted in Figure 1. Specifi-
cally, we use a 27-inch Apple iMac machine as a display. We
use an Intel RealSense SR300 as our RGBD camera, which

is placed under the iMac. We use the RGB images and their
associated depth images captured by the RealSense SR300
to build our dataset. We fix the system on a desk in a room
with normal lighting conditions. A chair is placed in front of
the system, and all participants can move this chair to any
comfortable position.

Data Acquisition Procedure
In the data acquisition phase, the participant is required to
click a white dot displayed randomly on the screen. This
clicking action makes the participant concentrate on the dot.
After clicking, a blue dot will be generated in the posi-
tion of the click. The distance between the white dot and
the blue dot helps us to judge the reliability of the cor-
responding sample, because it is possible that the partici-
pant was distracted while clicking, causing an inaccurately
placed blue dot. Finally, we drop incorrect dots exceeding a
certain threshold. After which we then use the coordinates
of the white dots as the ground-truth. When clicked, RGB
and depth images of the participant are recorded together
through the Intel RealSense SR300; the depth image is then
resampled to be the same size as the RGB image (1920 ×
1080 pixels) through a built-in program. The procedure is
divided into 16 sessions and each session contains 50 dots.

There are 218 participants in our experiments (141 males,
77 females, aged between 19 and 37 years old). All par-
ticipants have normal or corrected-to-normal vision. There
are about 600-800 RGB and depth image pairs for each par-
ticipant and their associated gaze point coordinates on the
screen. In total, our dataset consists of 165,231 RGB/depth
image pairs. We further use the images corresponding to 159
participants (119,318 RGB/depth image pairs) as training
data and use the data corresponding to the remaining 59 par-
ticipants as test data (45,913 RGB/depth image pairs). We
list the statistics about the RGBD gaze tracking dataset and
other gaze tracking datasets in Table 1.

Dataset Analysis
Since the participants can move their heads freely, our
dataset contains faces at various depths. It is also worth not-
ing that the depth images also have noise and black hole
effects due to occlusion, illumination, the specularity of
glasses, and out-of-valid range issues, as shown in Figure
2. The distribution of eyes at different distances is shown in



Figure 3 (The statistics are calculated by averaging the depth
values around eye areas, excluding invalid values). The vari-
able distances increase the complexity of the gaze point re-
gression model, which makes gaze tracking in our dataset
more challenging.

Method
As mentioned previously, gaze point estimation can be de-
composed into eyeball pose, head pose, and 3D eye position
estimation. Depth images provide head pose and 3D eye po-
sition information, which facilitates gaze tracking. The orig-
inal depth images, however, sometimes contain considerable
noise and black holes, limiting gaze tracking performance.
In this section, we propose a CNN-based multi-task learn-
ing framework to simultaneously refine depth images and
predict gaze points.

Figure 4 shows the overall network architecture. Our net-
work predicts gaze points with the following steps: 1) We
first extract eyeball pose features from two single-eye im-
ages. 2) We extract head pose features from RGB and depth
images. In order to obtain more accurate head poses, we re-
fine the depth map with a GAN. Here we utilize a generator
network architecture which uses both RGB and depth im-
ages for depth image refinement, where the feature maps in
the generator are also used to generate head pose features2.
3) We use the depth values of eye regions in the refined depth
maps and eye coordinates in the original image to encode the
3D eye position. 4) We concatenate eyeball pose features,
head pose features, as well as the 3D eye position features
together and feed them into a network containing some fully
connected layers for gaze point estimation.

Depth Image Refinement Based on GAN
Previous research has shown the practicability of single
RGB image-based depth image generation (Eigen, Puhrsch,
and Fergus 2014), which suggests that RGB images con-
tain some depth information. In our setting, we have ob-
served depth images with noise, as well as their correspond-
ing RGB images. Since we do not have an accurate ground-
truth depth for RGB images, we cannot directly learn a map-
ping with CNNs, as has been done in (Eigen, Puhrsch, and
Fergus 2014). Thus we propose to use RGB and depth im-
ages together to synthesize a better depth map within a GAN
(Goodfellow et al. 2014) framework.

Generator. In the generator, we feed RGB images and
depth images into two separate CNNs to extract features,
then we combine both features and use a decoder to gener-
ate a refined depth image. The detailed network architecture
of the generator is shown in Figure 5. Since the depth map
contains noise and black holes, we restrict the intensity of
the synthesized depth to be consistent with its ground-truth
for the non-black-hole areas. Because the measurement error

2Since the generator takes face and depth images as inputs,
which contain eyeballs and the depths of eyeballs/faces, the fea-
tures used for head poses contain some eyeball pose information
and eye coordinate information. To maintain consistency with (Zhu
and Deng 2017), we also refer to this feature as the head pose.

of depth camera is different among all depth maps, we hope
that CNNs would automatically fill the black holes. The
RGB image contains content information and the depth im-
age contains structure information. It is reasonable to infer
partial structure from the content of RGB face. The CNN ar-
chitecture itself seems to be a strong prior to regress more re-
alistic images from non-realistic ones with reasonable super-
vision, which is similar to (Ulyanov, Vedaldi, and Lempitsky
2017). In addition, the middle feature will also be consid-
ered as the head pose information to regress the gaze point
because the synthesized depth map information is from it to-
tally. We denote Ω = {(x, y)|Idi (x, y) 6= 0}, and Idi , I

RGB
i

as the ith RGBD image pair (i = 1, . . . ,M ), where M is
the total number of RGB/depth image pairs. Then the adver-
sarial loss is given by

`g = E[log(D(G(Id, IRGB)))] ∼ G (1)
Here G is the generator and D is the discriminator. Except
for adversarial loss, we also use an additional L1 loss as the
reconstruction loss to guide the training process, given by

`l1 =
1

M

∑
i

‖G(Idi (Ω), IRGB)− Idi (Ω)‖1 (2)

Discriminator. The discriminator module in Figure 4 con-
sists of simple convolution layers. It takes the synthesized
depth maps and real depth images as its input to make them
indistinguishable. The loss function of the discriminator D
is

`d = E[log(D(Id))] + E[log(1−D(G(Id, IRGB)))] ∼ D
(3)

Such synthesized depth maps help to obtain more accurate
depth values from eye regions, which promotes the perfor-
mance of gaze point estimation. In addition, when the syn-
thesized depth maps are of a high-quality, the head pose fea-
tures can help to predict gaze points more accurately.

Gaze Point Estimation Network
When a person stares at a point on the target screen, the po-
sition of the gaze point is geometrically determined by three
factors: eyeball pose, head pose, as well as 3D eye posi-
tions, as shown in Figure 1. Instead of directly regressing
gaze points from RGBD face images, following the work
of (Krafka et al. 2016; Zhang et al. 2017), we propose that
these factors be predicted separately, after which they can be
combined together for gaze point estimation.
Eyeball pose estimation. Although a single eye contains
eyeball pose information, two single-eye images can en-
hance estimation performance (Krafka et al. 2016) because
two eyes are expected to stare at the same gaze point on the
screen target. In this paper, we employ the shared ResNet-34
(He et al. 2016) as the eyeball pose extractor and take two
single-eye images as inputs of it.
Head pose estimation. RGB images contain head pose in-
formation, while depth maps also contain 3D geometric in-
formation that is useful for pose estimation. Hence, we uti-
lize both RGB images and depth maps of full faces to esti-
mate head poses. Since the features at the bottom of the gen-
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Figure 5: The network architecture of generator and head
pose feature extractor.

erator already contain the content information and the struc-
ture information (from RGB and depth image), we reuse
them to generate head pose features with an additional two
convolutional layers, thereby helping to reduce the dimen-
sionality of head pose features.
3D eye position extraction. In order to get 3D eye positions,
we first use facial landmark detection methods to locate eye
positions in RGB face images. We denote the coordinates of
the left and right eye centers as (xl

e, y
l
r) and (xr

e, y
r
e), respec-

tively, and denote the depth of these eyes as zle and zre , which
can be obtained from the synthesized depth image. We can
directly feed these coordinates to a neural network for gaze
point estimation. It is based on the fact that the 3D eye posi-
tion in the camera-centered world coordinate system can be
derived based on the eye coordinates of images captured by
the camera as well as their distances to the camera since the

data acquisition system is fixed.
Gaze point estimation. Given eyeball pose features, head
pose features, and 3D eye position features, we concatenate
all of this information and feed it to a neural network with
two fully connected layers to conduct gaze point estimation.
The loss function is as follows:

`gp =
1

M

M∑
i

‖p̂i − pi‖22 (4)

where p̂i denotes the predicted gaze point, and its ground-
truth is pi for the ith training image pair (i = 1, . . . ,M ).
Remarks. Since the generator is shared by both the gaze
point prediction network and the depth image refinement
network, the optimization of gaze point prediction enforces
the depth of refined images and pose features to be cor-
rect, thus facilitating GAN training; in addition, the GAN
discriminator also helps to generate better depth images for
more accurate gaze tracking.

Implementation Details
For data preparation, we first use the Dlib library to detect
faces and landmarks on our dataset. Then a square patch
with a length of 1.5 times the distance between eye corners is
cropped out. Face regions and eye regions are cropped from
the original RGB images and depth images. All cropped im-
ages are resized to be 224 × 224 and are then fed into our
proposed CNN architecture. We first separately pretrain the
GAN and gaze estimation networks, and then we finetune
the overall network to get optimal estimation performance
with multi-task learning.



Experiments
Experimental Setup
Training setup. We implement our method with the Py-
Torch (Paszke et al. 2017) framework. The batch size for
all of our experiments is 100 for training and 200 for testing.
We use 8 NVIDIA Tesla k40m GPUs to train our network.
Stochastic Gradient Descent (SGD) optimization algorithm
is adopted to train our network.

Datasets. We evaluate our method on both our RGBD
gaze dataset and EYEDIAP. Our RGBD gaze dataset is used
for gaze point prediction, and we choose images correspond-
ing 159 subjects from the total of 218 subjects as a training
set, with the remaining used as a test set. The EYEDIAP
dataset is used for gaze direction prediction. Since depth im-
ages also facilitate estimation of gaze direction, we also use
them for performance evaluation. We follow the same strat-
egy as (Zhang et al. 2017) to choose frame images and gaze
points. After that, we divide the 14 participants into 5 groups
and perform cross-validation.

Evaluation metrics. For gaze point estimation on our
RGBD gaze dataset, we use the Euclidean distance metric
to measure the distance between the prediction of our gaze
point and its ground-truth.

de =
1

M

M∑
i

‖pi − p̂i‖2 (5)

where M is the total number of images in our dataset, pi is
the ground-truth for the ith image, and its prediction is p̂i.

For gaze direction estimation on the EYEDIAP dataset,
the angle deviation between our estimation and its ground-
truth is used for performance measurement, i.e.,

ae =
1

N

N∑
i

arccos
〈ai, âi〉
|ai||âi|

(6)

where N is the total number of images in EYEDIAP. ai is
the ground-truth of the ith image, and its prediction is âi.
〈ai, âi〉 refers to the inner product between ai and âi. To
be consistent with (Zhang et al. 2017), Equation (5) is in
millimeters (mm), and Equation (6) is in degrees.

Table 2: Performance comparison of gaze point estimation
on our dataset. (unit: mm)

Methods de
Multimodal CNN (Zhang et al. 2015) 67.2
iTracker (Krafka et al. 2016) 55.5
iTracker* (Krafka et al. 2016) 47.5
Spatial weights CNN (Zhang et al. 2017) 60.6
Our method 38.7

Table 3: Performance comparison of gaze direction estima-
tion on EYEDIAP. (unit: degree)

Methods ae
Multimodal CNN (Zhang et al. 2015) 10.2 (2.9)
iTracker (Krafka et al. 2016) 8.3 (1.7)
iTracker* (Krafka et al. 2016) 5.7 (1.1)
Spatial weights CNN (Zhang et al. 2017) 6.0 (1.2)
Ghiass et al. (Ghiass and Arandjelovic 2016) 7.2 (1.3)
Our method 4.8 (0.7)

Table 4: Network architecture evaluation on our dataset and
EYEDIAP.

Baselines de ae
No head pose 54.0 7.8
No depth 46.7 5.7
No RGB 52.9 7.1
No decoder 44.2 5.3
Stacked RGB + depth 41.6 5.0
Our method 38.7 4.8

Performance Comparison
We compare our proposed method with state-of-the-art deep
learning based methods for gaze point estimation on our
dataset and gaze direction estimation on EYEDIAP, includ-
ing:
• Multimodal CNN (Zhang et al. 2015): Normalized eye

images and 3D head poses are fed into a CNN consist-
ing of a LeNet feature extractor and a few fully connected
layers to predict gaze direction.

• iTracker (Krafka et al. 2016): Eye images, faces, and face
grids are fed into a multi-region CNN architecture. In the
fully connected layer, all features are combined to predict
gaze points.

• iTracker* (Krafka et al. 2016): We substitute the origi-
nal feature extractor in iTracker with ResNet-34. All other
parts are the same as with iTracker (Krafka et al. 2016).

• Spatial weights CNN (Zhang et al. 2017): It makes use of
the full-face image as its input to learn the spatial weights
CNN for gaze point and gaze direction prediction.
The experimental results of different methods are listed

in Table 2 and Table 3, which show that our method out-
performs all other methods for both gaze point and gaze di-
rection estimation by a large margin. Specifically, we ob-
tain the following findings from these results: i) Results of
iTracker and iTracker* suggest that the architecture of the
basic eyeball pose feature extractor is important for improv-
ing gaze tracking accuracy. ii) For a fair comparison, we im-
prove the backbone of iTracker by using the same network
as ours (ResNet-34) and denote this baseline as iTracker*.
Our method still achieves the best performance, which is
because: firstly, our decomposition strategy for gaze point
estimation problem is effective and we introduce depth in-
formation into the network, which provides both head poses
and 3D eye positions. Secondly, we utilize a generator and
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Figure 6: Visualization of original and synthesized face
depth map.

apply GAN to refine the depth maps and predict gaze points.
Although we do not geometrically model 3D faces, the depth
data provide sufficient information, necessary head poses
and 3D eye positions for improving gaze estimation.

In Table 3, we apply our methods to gaze direction esti-
mation. The results on the EYEDIAP dataset are the average
results based on 5-fold cross-validation, and the numbers in
parentheses indicate the standard deviations of angles. Dif-
ferent from gaze point estimation, gaze direction estimation
does not depend on the 3D eye positions, but the depth maps
still provide the head pose information and help head pose
estimation. Thus, with synthesized depths, our method still
achieves state-of-the-art results for gaze direction estimation
on EYEDIAP. The t-test 3 shows that the improvements are
statistically significant.

Ablation Studies
In order to explore the effectiveness of different modules for
gaze tracking, we report the performance after removing dif-
ferent components from our network. We conduct these ex-
periments on our dataset and the EYEDIAP dataset. The re-
sults of all baseline methods are listed in Table 4. For gaze
point estimation, our network combines head pose features,
eyeball pose features and 3D eye position features. For gaze
direction estimation, we only concatenate the head pose fea-
tures and eyeball pose features.

First, we remove the head pose information, which means
that the network only takes two single-eye images and 3D
eye positions as inputs, which leads to the worst recorded
performance. As mentioned before, head poses are neces-
sary for gaze estimation, otherwise, the network will be
over-fitting. Both RGB image and depth map provide head
pose information. Next, we remove the RGB image and
depth map, respectively. Removing depth input results in
better performance over removing RGB input, which shows
that RGB face data makes for better representation than fa-
cial depth data. It is also worth noting that the difference
between removing depth and iTracker* (Krafka et al. 2016)
lies in the 3D eye position encoding method. To obtain 3D
eye position information, in (Krafka et al. 2016), a binary

3https://www.graphpad.com/quickcalcs/ttest1/?Format=SD

map (referred to as a face grid) is used to indicate face re-
gions in the images, and the sizes of the faces and their po-
sitions in the images captured by the camera roughly en-
codes the 3D eye coordinates. Our accurate 3D eye positions
slightly enhance the performance (46.7 mm vs. 47.5 mm), as
shown in Table 4.

In addition, we also remove the decoder module during
depth reconstruction, obtaining a worse performance than
the depth reconstruction, which validates the effectiveness
of depth refinement in our network. The network can learn a
better representation of head pose feature due to the super-
vision of depth reconstruction. Finally, since we introduce
the depth map to extract head pose feature, we also conduct
the experiment about how to combine RGB image and depth
map. We stack both together to extract the head pose feature
and denoted it as Stacked RGB + depth, but this leads to a
poorer performance than our method.

Evaluating the Quality of Synthesized Depth Maps
Due to the raw depth images directly obtained from depth
sensor contain noises, it is hard to evaluate how accurate the
generated depth map is. Alternatively, we evaluate the qual-
ity of synthesized depth maps through the performance of
gaze point estimation indirectly. In this experiment, we use
the same network architecture. In the testing phase, how-
ever, rather than using depth data from the refined depth
map, we use the depth value of the original depth image
as 3D eye positions for gaze tracking. The gaze point es-
timation error of this baseline on our dataset is 40.4 mm,
which is worse than that when using the refined depth map
(38.7 mm). The improvement of our method over this base-
line quantitatively validates the better quality of synthesized
depth maps over original maps. We also qualitatively show
the improvement from original depth images to refined ones
in Figure 6. Our synthesized depth map can complement
the black holes caused by occlusion, the specularity of eye-
glasses, and out-of-valid ranges of the depth camera partly.

Conclusion
In this paper, we decompose gaze point estimation into eye-
ball pose, head pose, and 3D eye position estimation. Depth
is important to predict gaze because it complements head
pose and 3D eye position information. Raw depth images di-
rectly obtained from depth sensors, however, contain noises,
so we utilize a generator network and apply GAN to re-
fine the depth maps and predict gaze points simultaneously.
The entire network is combined via a multi-task learning
framework. In addition, we build a large-scale RGBD gaze
dataset. As far as we know, this is the largest dataset in terms
of its number of subjects. Extensive experiments on our
dataset and the EYEDIAP dataset show that our gaze track-
ing method outperforms all existing state-of-the-art methods
by a large margin.

Acknowledgment
This project is supported by NSFC (No. 61502304).



References
Eigen, D.; Puhrsch, C.; and Fergus, R. 2014. Depth map
prediction from a single image using a multi-scale deep net-
work. In Advances in neural information processing sys-
tems, 2366–2374.
Ghiass, R. S., and Arandjelovic, O. 2016. Highly accurate
gaze estimation using a consumer rgb-d sensor. In Proceed-
ings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, 3368–3374. AAAI Press.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In Advances in neural
information processing systems, 2672–2680.
Hansen, D. W., and Ji, Q. 2010. In the eye of the beholder:
A survey of models for eyes and gaze. IEEE transactions on
pattern analysis and machine intelligence 32(3):478–500.
He, Q.; Hong, X.; Chai, X.; Holappa, J.; Zhao, G.; Chen,
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