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ABSTRACT

Our observation shows that pedestrians’ heights greatly affect
pedestrian detection performance, and for small pedestrians,
their context information is useful for localizing and recog-
nizing these pedestrians. Based on our observation, a FPN++
framework, which is an extension of Feature Pyramid Net-
work (FPN) is proposed. It improves the FPN from the fol-
lowing aspects: i) we modify the backbone of FPN by reduc-
ing the stride of convolution from 2 to 1 in FPN from earlier
layers, which allows the network to detect smaller pedestrians
with more semantically meaningful features extracted from
deeper layers, then we replace the convolution with dilated
convolution to increase the local receptive fields and facilitate
the detection on pedestrians of all scales; ii) a context-aware
detection module is introduced in the predictor head of FPN
to leverage context information for detection. Extensive ex-
periments on the CityPersons and Caltech pedestrian datasets
show that our FPN++ achieves state-of-the-art performance
and significantly improves the performance for small pedes-
trians. Our solution can be readily extended to other detection
tasks, and experiments on the VOC2007 benchmark also val-
idate the effectiveness of our solution.

Index Terms— Pedestrian Detection, Feature Pyramid
Network

1. INTRODUCTION

Pedestrian detection has been well studied because of its po-
tential applications in autonomous driving, robotics and intel-
ligent surveillance. Recently performance of pedestrian de-
tection has been greatly boosted benefiting from deep learn-
ing based approaches [1], but it still suffers the large scale
variance of pedestrians [2, 3, 4].

In light of the capability of Feature Pyramid Network
(FPN) for detecting objects with different sizes [5], FPN has
also been introduced for pedestrian detection. Specifically, in
FPN, low-resolution, semantically stronger features are com-
bined with high-resolution, semantically less features with a
feature pyramid architecture for objects of different scales.
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Fig. 1. Green columns demonstrate the height distribution of
pedestrians in CityPersons Dataset, ranging from 20 to 600
pixels. Blue lines and red lines show the corresponding miss
rate of Feature Pyramid Network (FPN) and our FPN++. We
are able to improve the detection performance for small-scale
persons, while preserving the accuracy for large-scale per-
sons.

However, as shown in Fig. 1, the performance still drops sig-
nificantly for small pedestrians. For example, for the pedes-
trians with height less than 50 pixels, miss rate is around 70%.
The poor detection performance of small-scale pedestrians is
possibly due to the following reasons: i) the weak represen-
tation of small-scale pedestrians in shallow stages [2]; ii) the
low context information in Region-of-Interest (Rol) pooling
for bounding box representation. As shown in Fig. 1, the
central area of ROI features has strong pattern for recognition
for large-size instances, while the context helps recognize the
pattern of small-scale pedestrians. An intuitive explanation to
this phenomenon is that large pedestrians have enough local
information on themselves to be recognized, while surround-
ing context is essential for detection on obscure or dim pedes-
trians.

To remedy the deficiency of FPN for small-scale pedes-
trian detection, we propose to improve the backbone and pre-
dictor head from the following aspects: i) we modify the
backbone of FPN by reducing the stride of convolution in
FPN from earlier layers, which allows the network to de-
tect smaller pedestrians with more semantically meaningful
features extracted from deeper layers, and by replacing the
convolution with dilated convolution, which increases the lo-
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Fig. 2. Analyzed features of pedestrians. Different from
the larger ones which have strong activation on central area,
small-size pedestrians (left) have strong activation on both
sides of the feature map.

cal receptive fields and facilitates the detection on pedestri-
ans of all scales. We denote the FPN with such modification
as FPN+; ii) a context-aware detection module is introduced
in the predictor head of FPN to leverage context information
for classification and bounding box regression. In this way,
our solution can well detect both small-scale and large-scale
pedestrians. Further, the idea of our FPN++ can be readily
extended to the detection of other general objects.

The main contribution of this paper can be summarized as
follows:

i) We conduct experiments to analyze the feature distribu-
tion of pedestrians with different sizes, and show that context
information is vital for the detection of small-size pedestrians.

ii) A FPN++ framework is proposed, which extends the
backbone and predictor head respectively.

iii) Extensive experiments on both pedestrian detection
and general object recognition validate the effectiveness of
our approach.

2. RELATED WORK

Earlier work uses hand-crafted features, including HOG, LBP
and LUV [6, 7], for pedestrian detections. Readers may refer
to the survey paper[8] to get an overview of hand-crafted fea-
tures based pedestrian detection. Here we only briefly review
deep learning based pedestrian detection methods.

Faster R-CNN [9] is a prevailing method for object detec-
tion. Features are extracted on a 16x downsampled feature
map. Undoubtedly, it’s unsuitable for small-size pedestrians.
[10] and [1] both remove the last pooling layer to reduce the
original stride to a half. One difference between [10] and [1]
is that [1] replaces the common convolution after the removed
pooling layers with dilated convolution, while [10] keeps the
original design in this part.

Nevertheless, one feature map cannot satisfy the large
scale variance of pedestrians. MSCNN [11] extracts features
on feature maps with different spacial resolutions to detect
different-scale objects respectively. To improve semantic lev-
els of feature maps from low-level stages, FPN [5] and RON
[12] fuse features from neighbouring two stages so that de-
tection sub-network can utilize both higher-resolution feature
and higher-semantic feature. However, [2] argue that the se-
mantic level of small pedestrians is still not high enough.
They propose a MHN solution which processes features from
low-level stages into high-level semantic features by deep
multi-branch networks.

3. APPROACH

Our FPN++ customizes the FPN for more robust pedestrian
detection. It consists of two parts: 1) a FPN+ backbone, which
we reduce the stride of convolution and replace it with di-
lated convolution; and ii) a predictor head which leverages
a context-aware predictor head that utilizes context informa-
tion around the Rol for pedestrian detection and bounding box
regression, consequently improves the small-scale pedestrian
detection. Our overall network structure is demonstrated in
Fig. 3.

3.1. FPN+ backbone

The bottom right part of Fig 3(a) demonstrates a basic struc-
ture of our network. Our FPN+ extends FPN by reducing the
stride from an early stage to enlarge resolution of our feature
map, and replacing the convolution with dilated convolutions
to enlarge local receptive field of high level features. Specif-
ically, we change the stride from 2 to 1 in the first block of
the stage II, consequently feature maps from stage II, III and
IV in our FPN+ are 22 times as large as the original ones in
FPN. With the expansion of spatial resolution, we detect the
smallest pedestrians in stage III and combine the context from
stage III and stage IV so that our detection sub-network gets
features with higher semantic level. Similarly, the improve-
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Fig. 3. Overall architecture of our network. 3(a) left is
the original FPN and right is the newly proposed backbone
FPN++ for better semantics. 3(b) is a context-aware predic-
tor head for environmental information. Given an input im-
age, it first goes through FPN+ and extracts features on four
stages. After a naive foreground and background classifica-
tion and localization, it’s then fed into the context-aware pre-
dictor head for a second time classification and localization.

ment is also beneficial to detecting pedestrians of medium and
large scales detected in deeper stages. As the improvement of
semantic level and extra higher-level context are from the top-
to-down structure, there is little need to use the multi-branch
structure as what MHD [2] does, consequently our FPN+ re-
duces large amount of computation and memory occupation.

After the changing of the spacial resolution, we dilate [13]
all of the convolution filters from stage III to stage V by 2
(except the convolution in the first block of stage III) to keep
the receptive fields of every pixel as large as the ones in the
original FPN. This allows the feature maps in low stages to
be used both for lower-stage detection and higher-stage de-
tection, which is another internal condition to avoid multi-
branch structure. Although the receptive fields of every pixel

is expanded by dilation, there are large overlap in two adja-
cent pixels’ receptive fields. So the undilated RPN’s receptive
fields in stage 7 from the improved backbone are closer to the
ones in stage ¢ — 1 from the original backbone, rather than
stage ¢. It meets our design intent to detect smaller pedestri-
ans in higher stages.

3.2. Context-aware predictor head

To utilize surrounding contextual information, we design a
sub-network (see Fig. 3(b)) with meticulous care. First, each
Rol is expanded by « times on width and (8 times on height.
Then, this larger Rol is pooled into a [ x [ feature map. Two
modified pyramidal resnet blocks are applied to further en-
hance the feature performance. Each block consists of a 1 x 1
conv to reduce dimensionality, a 3 x 3 conv dilated by 3, and
another 1 x 1 conv to recover dimensionality. All of the convo-
lutional layers are of stride 1 and no padding. Since padding
is not used, the size of input is larger than the one of output in
each block. We design these no-padding pyramidal block to
avoid noise caused by padding because our post-Rol-pooling
feature is much smaller than usual feature map. In each block,
we crop the input feature for the block and get the center area
so that we can add it to the output of the block. Finally, we
apply an RPN (a 3 x 3 conv followed by two sibling 1 x 1
convs) on the output to perform object/nonobject binary clas-
sification and bounding box regression. In practice, « is set
to 3, B is set to 2 and [ is 15. Coupled with dilated convolu-
tion, the two ResNet blocks can further enhance the semantic
information with surrounding context. Obviously, the post-
Rol-Pooling convolution requires much less extra computa-
tion and memory resources than convolution on feature maps
in backbone.

The prediction of the module described above is com-
bined with the prediction of the original Faster R-CNN. We
simply average the two predictions, and the performance is
already satisfactory. More complicated combination strategy
is possible but it is beyond the study scope of this paper.

4. EXPERIMENTS

4.1. Evaluation metric

We use the log miss rate averaged over the false positive per
image (FPPI) range of [1072; 10°] (M R?2), the official eval-
uation metric of the CityPersons dataset [10], to measure de-
tection performance. It is the average value of miss rates for
9 FPPI (false positives per image) rates evenly spaced in the
log-space ranging from 102 to 10Y (lower score indicates bet-
ter performance).

4.2. Implementation Details

Our method is implemented on the PyTorch platform. We
use a ResNet50 [14] pretrained on the ImageNet[15] dataset



as backbone network. All the newly added parameters are
initialized with gaussian distribution with standard deviation
of 0.01. We optimize the detector with Stochastic Gradient
Descent (SGD) with 0.9 momentum and 0.0001 weight decay.

In order to further improve detection performance, we use
a denser class of anchor scales, which can be calculated as:

Si = A ¥ Spin * /T * (Smax)

Smin

2xi—1
N

i=1,2,..N/2

where A is the upsampling factor and r is the ratio of pedes-
trians. Specifically, N = 24 and r = 0.41. learning rate is set
to 1073 for the first 40k iterations, and reduced by 10! for
the next 20k iterations. Following the convention in existing
research [1][10], for the Caltech pedestrian dataset, A is set to
2, while for CityPersons, A is set to 1.3.

4.3. The CityPersons dataset

The CityPersons dataset is built upon Cityscapes dataset [16]
with a finer annotation of pedestrians. It is the most popu-
lar dataset on pedestrians detection in recent years due to its
diversity and challenge. It consists of 5000 images with a res-
olution of 1024x2048 pixels. For sake of fairness and com-
parisons, we use the original training set and validation set,
which are composed of 2,975 and 500 images respectively.
The rest are used in testing.

We compare our method with other state-of-the-art pedes-
trian detection methods, including Repulsion[17], OR-CNN
[18], MHN-D[2] and Adapted Faster R-CNN [10]. During
training and testing, all images are upsampled to 1.3x. Re-
sults of different methods are demonstrated in Table. 1. We
can see that our method achieves state-of-the-art performance
on the All test set without bells and whistles. Specifically,
we outperform the best method by 1.81% on All subset. That
is, our method can handle pedestrians of all heights. Further,
we implement three of these networks with both VGG-16 and
ResNet50 in Pytorch. For Adapted Faster R-CNN, it needs
14722MB GPU memory with ResNet50. For OR-CNN, it can
be inferred from its structure that it needs more memory than
Adated Faster R-CNN because it adds complicated detection
structure on Adated Faster R-CNN. While our network re-
quires less memory resources than others with the ResNet50
backbone because we make full use of the semantic fusion
structure of FPN.

4.4. The Caltech pedestrian dataset

The Caltech pedestrian dataset [19] consists of a 2.5-hour
video recorded on a bus on the streets of Los Angeles. It’s
divided into a total of 11 videos. We follow the standard cri-
teria [19], where the training samples are extracted every 3
frames on the first 6 videos, and testing are extracted every 30
frames on the other 5 videos.

Following the standards from [2], we use reasonable all
test set (pedestrians over 20 pixels). Note that we upsample

Method backbone upsample | All Nii;[n; )r Y
Adapted
Faster II;CNN VGG16 1.3x 43.86 3689
MHN-D VGG16 1.3x 39.16 | 19908
OR-CNN VGGI16 1.3x 40.19 -
Repulsion Loss | ResNet50 1.5x 39.17 | 22895
Ours \ ResNet50 1.3x \ 37.36 \ 14543

Table 1. Results on the CityPersons test set. Lower is bet-
ter. We are able to reach state-of-the-art performance on All
test set. This demonstrates the effectiveness of our method to
handle pedestrians of different heights and different levels of
occlusions. Compared to other state-of-the-art methods, we
are able to improve by 1.81% on All.

the images twice during both training and testing, which is a
common trick to further improve our performance. Results
and ROC are summarized in Fig. 4. We achieve the lowest
miss rate, which validates the effectiveness of our method.
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Fig. 4. Results and ROC on Caltech pedestrian detection.
Pedestrians over 20 pixels are used for evaluation, which is
a harder criteria. We achieve the lowest miss rate.

4.5. Ablation study
4.5.1. Evaluation of FPN+ module

Two related and representative feature pyramid methods
are compared to our FPN+ module on the Citypersons
valiadation dataset to demonstrate the effectiveness of
FPN++. One of them is FPN [5], the other is a modified FPN
where P3 to P6 in FPN are used to detect corresponding an-
chors originally detected on P2 to P5 respectively. Because
of the similarity with backbone in RetinaNet [20], we denote
the second comparison as modified FPN (mFPN).

The result in Table. 2 shows our FPN+ achieves better
performance on all the scales than baselines. With same spa-
cial resolution on each scale, FPN++ shows advantage over



FPN, which demonstrates the importance of higher-level se-
mantics. With same-level semantics on each scale, FPN+ has
lower MR than mFPN, which proves the importance of larger
resolution.

Height | 30 50 100 200 400 | ALL
FPN 68.90 | 48.03 | 25.49 | 14.58 | 7.90 | 42.32
mFPN | 75.06 | 52.41 | 25.10 | 13.60 | 9.00 | 42.89
FPN+ | 64.23 | 46.57 | 22.07 | 12.21 | 7.87 | 39.36
Table 2. Detection results evaluated on the CityPersons

validation set. All modules are trained on training set. Our
proposed method achieves the best performance.

4.5.2. Evaluation of FPN+ on VOC2007

Our FPN+ is a general module which can be readily adapted
for other general object detection task. We propose to evalu-
ate our FPN+ with the VOC2007 benchmark [21] for general
object detection. VOC2007 contains 20 categories and a total
of 9963 images, 5011 for training and 4952 for testing. Mean
average precision (mAP) is used as the evaluation criterion.

The comparison between our FPN+ and FPN [5] are
shown in Table 3. We can see that our FPN+ outpeforms FPN
which validates the effectiveness of our method. Note that
FPN is not method corresponding to the best performance on
VOC2007. We just want to demonstrate that, with a similar
configuration and parameters, our networks is the more effec-
tive for object detection.

4.5.3. Comparison of three block structure

To figure out whether dilation is beneficial to performance
and what size of receptive field is better when spacial resolu-
tion is enlarged, we compare three backbones with different
structures of the blocks as following:

(1)FPN+ with no dilation (ND): use the original block in
ResNet50 with common convolution filters.

(2) FPN+ with half dilation (HD): dilates half of the 3x3
convolution filters from stage III to stage V by 2 and keeps the
other half unchanged.

(3)FPN+ with all dilation (AD): dilates all the 3x3 con-
volution filters from stage III to stage V by 2, which is our
FPN+.

To avoid the potential impact from pre-trained weights
on these experiments, we train these three backbones from

Performance
Method | Backbone Stage (mAP)
FPN ResNet50 | P2,3,4,5,6 73.1
FPN+ | ResNet50 | P3,4,5,6,7 74.5

Table 3. Results on VOC2007 test set.

Height | 30 50 100 200 400 ALL
ND 82.00 | 64.86 | 44.48 | 36.84 | 23.01 | 61.46
HD 76.26 | 58.86 | 43.92 | 3542 | 21.69 | 60.18
AD 73.66 | 56.06 | 36.37 | 28.02 | 18.24 | 53.59

Table 4. FPN+ results on different blocks, which are trained
from scratch.

Height 30 |50 100 | 200 | 400 | ALp | Sub-metwork
parameters
FPN+ 6547 | 46.01 | 22.98 | 12.45 | 7.46 | 38.85 | 13.25M
FPN++ 62.82 | 42.45 | 22.11 | 13.24 | 832 | 37.82 | 13.26M
FPN-++ w. 2FC | 65.80 | 44.97 | 23.11 | 14.34 | 9.28 | 39.56 | 26.51M

Table 5. Detection results and detection sub-network parame-
ter sizes corresponding to different configurations of detection
sub-network.

scratch in this experiment. The results are shown in Table. 4.
It can be seen that detection performance goes better in all of
the scales with the ratio of dilated filters increasing. Including
from the results, dilated convolution is beneficial to detection
on small, medium and large scales. We conjecture that this
is because receptive field exercises as a great influence on se-
mantics no matter what size of detected objects is.

4.5.4. Evaluation of context-aware predictor head

To utilize surrounding context for pedestrian detection, we
design a context-aware predictor head. We show the results
of FPN+ where vanilla detection module is used and our
FPN++ in Table 5. Compared with FPN+, FPN++ achieves
better performance which mainly comes from the promotion
on small-size pedestrian detection (HS 2.6 points lower and
HS50 3.5 points lower). Usually, small objects are more likely
to be blurred or dim, so this comparison can prove that our
surrounding context detection works as we expects since the
dataset does not contain annotations on fuzzy degree.

4.5.5. Comparison of different structures of context-aware
predictor head.

[22] completely duplicate the structure of the original Faster
R-CNN module into a parallel module. However, in our opin-
ion, the two FC layers in the original sub-networks are diffi-
cult to train and bring a large number of parameters. To ver-
ify our opinion, we design a 2FC sub-network. We pool the
larger Rol into a 7 x 7 feature map and send it to a FC sub-
network exactly same as the other one. The predictions from
two parallel sub-network are merged at last. We denote this
baseline as FPN++ w. 2FC. In Table 5, FPN++ w. 2FC shows
no advantage over FPN++, even over FPN+. The degrade can
be attributed to the large amount of extra parameters. By con-
trast, our CEM bring an obvious promotion at the cost of little
extra parameters.



5. CONCLUSION

We have studied the impact of resolution, semantic level and
receptive field on FPN based pedestrian detection and pre-
sented a simple but effective backbone for pedestrian detec-

tion.

Also, we have explored the difference between features

from different sizes of pedestrians and designed a context-
aware predictor head. Extensive experiments validate the ef-
fectiveness of our solution for pedestrian detection.
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